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Abstract

Deploying Vision Transformers (ViTs) in real-world multi-
task learning remains challenging due to their massive
computational costs and the difficulty of pruning shared
backbones without harming task performance. Single-task
pruning often causes destructive interference by discard-
ing weights critical to other tasks, while existing multi-task
pruning strategies remain costly and unscalable for billion-
parameter models. We propose Multi-LoRA Guided Im-
portance Consensus (LoGIC), a unified framework for ef-
ficient and robust multi-task ViT pruning. LoGIC follows
a two-phase procedure: (i) task-consistent pruning of LoRA
modules, guided by a task-adaptive gating mechanism that
balances shared and task-specific contributions while enforc-
ing structured sparsity for deployment; and (ii) cross-task
consensus pruning of the frozen ViT backbone, which re-
tains both universally shared and task-specialized capabil-
ities, enabling aggressive sparsity without sacrificing accu-
racy. Across five diverse vision benchmarks, LoGIC achieves
up to 50% structured sparsity while maintaining competitive
accuracy and surpassing all baselines.

Code — https://github.com/AnderStudio/LoGIC

Introduction

Vision Transformers (ViTs) (Dosovitskiy et al. 2020a; Liu
et al. 2021; Arnab et al. 2021) have shown strong perfor-
mance across diverse vision tasks, including image caption-
ing (Li et al. 2023), object detection (Zhang et al. 2021), and
semantic segmentation (Zhang et al. 2022). This progress
stems largely from pretraining large-scale ViT backbones on
extensive datasets, then adapting them via fine-tuning (Tay
etal. 2021; Goyal et al. 2023). However, fully fine-tuning for
each task is computationally costly and storage-inefficient,
especially in multi-task settings that require deploying many
task-specific variants. To address this, parameter-efficient
tuning methods such as Low-Rank Adaptation (LoRA) (Hu
et al. 2022; Zhu et al. 2024; Yang et al. 2023b) have gained
traction. LoORA employs low-rank matrices to encode task-
specific knowledge while freezing backbone parameters, al-
lowing a single backbone to support multiple tasks. This
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design balances efficiency and adaptability, making it espe-
cially effective for multi-task learning.

To balance accuracy and efficiency in LoRA, a key chal-
lenge is choosing its rank (Albert et al. 2025), which is usu-
ally fixed beforehand and often leads to empirically subopti-
mal choices (Xie and Liao 2023; Ahmed et al. 2025). Prun-
ing (Parikh et al. 2024; Yang et al. 2023a; Xu et al. 2024) of-
fers a natural remedy by iteratively removing redundancy to
improve inference efficiency. Recent work prunes LoRA us-
ing parameter or output based signals (He et al. 2022; Zhang
et al. 2023; Zhou et al. 2025), showing that only a fraction
of weight in LoRA contributes meaningfully to predictions.
However, these methods focus mainly on LoRA and over-
look its interaction with the backbone. In practice, the back-
bone typically contains 10 to even 100 times more parame-
ters than LoRA, making backbone pruning far more impor-
tant, yet LORA’s task specific signals and structural coupling
make pruning the backbone much more challenging.

More recently, LORAPrune (Zhang et al. 2024) integrates
LoRA into pruning to retain task-relevant backbone param-
eters, but its reliance on a single LoRA limits applicabil-
ity in multi-task settings. Extending it to multiple tasks in-
troduces cross-task dependencies: different LoRAs impose
conflicting sparsity patterns on the shared backbone (Sun
et al. 2022; Xiang et al. 2024; Jeong et al. 2021), and prun-
ing based on one task’s signal may remove parameters vital
for others, leading to unpredictable cross-task degradation.
We theoretically show that pruning in multi-LoRA ViTs in-
duces inherent structure dependency between the backbone
and all LoRA modules, and that this further escalates into
task dependency in multi-task settings, where adapters can
interfere with one another through the shared backbone. In
our preliminary experiment, pruning the backbone using the
image-classification LoRA and reusing it for semantic seg-
mentation led to a 12.3% performance drop.

To address these challenges, we propose the Multi-LoRA
Guided Importance Consensus (LLoGIC), a unified frame-
work for pruning ViTs in multi-task settings. LoGIC op-
erates in two phases. In the first phase, we prune LoRA
modules to remove redundant parameters. Allowing each
task to define its own structured pruning mask causes (i)
inconsistent sparsity patterns across tasks, hindering deploy-
ment, and (ii) redundant parameters due to missed cross-task
sharing. We therefore enforce task-consistent pruning masks



within each layer to enable deployment-friendly structured
sparsity. Because uniform sparsity may limit task-specific
flexibility, we introduce a task-adaptive gating mechanism
that learns soft combinations of shared and task-specific
LoRA paths, balancing knowledge sharing with specializa-
tion and providing pruning signals to reduce interference
and redundancy. In the second phase, pruning the shared ViT
backbone poses two further challenges: (iii) parameters re-
dundant for one task may be essential for others, and (iv)
identifying universally useful parameters is difficult. LoGIC
addresses this by unifying LoRA-guided gradient sensitivity,
routing-based task usage, and LoRA adaptation magnitude
into a consensus-based score, ensuring pruning removes
only parameters consistently unimportant across tasks while
preserving shared and task-specific representations.

* We propose LoGIC, the first unified pruning framework
that jointly optimizes a sparsified shared ViT backbone
and interchangeable LoRA modules, enabling scalable
multi-task deployment under resource constraints.

* LoGIC employs a shared pruning mask with task-wise
gating to enforce consistent sparsity while preserving
task-specific adaptability, and a consensus-based back-
bone pruning strategy that unifies multi-task signals to
retain both universal and task-critical parameters.

* We conduct extensive experiments on five vision tasks
using two large-scale ViT backbones. Results show that
LoGIC achieves full-precision performance with only
50% parameter utilization, without any loss in accuracy.

Related Work

While pruning can improve efficiency by focusing on im-
pactful parameters, multi-task settings pose unique chal-
lenges, as tasks often rely on different parameter subsets,
rendering single-task strategies suboptimal (Ye et al. 2023;
He et al. 2021). To address this, DiSparse (Sun et al. 2022)
introduces a disentangled pruning framework that com-
putes task-specific saliency scores and prunes shared pa-
rameters only when unanimously deemed unimportant. Al-
though effective in mitigating performance degradation, its
unanimity rule limits scalability as the number of tasks
grows. AdapMTL (Xiang et al. 2024) extends this ap-
proach by jointly learning weights and structured masks via
differentiable thresholding, employing separate shared and
task-specific thresholds alongside adaptive task reweight-
ing (Chen et al. 2018) to handle imbalance. Unlike DiS-
parse, AdapMTL trains from scratch, making it more suit-
able for resource-constrained deployments. Nevertheless,
most multi-task pruning methods still rely on full-model
fine-tuning, which incurs high training overhead and under-
mines parameter efficiency in large Transformers. Moreover,
many importance estimates remain heuristic or gradient-
based (Xiang et al. 2024; Sun et al. 2022), failing to fully
capture task-disentangled signals.

To address the inefficiency of full fine-tuning, recent
work has explored parameter-efficient strategies, with Low-
Rank Adaptation (LoRA) (Hu et al. 2022) becoming widely
adopted in multi-task learning (Chen et al. 2023; Fu et al.
2023). To further cut adaptation costs, several methods

prune LoRA modules directly, using heuristics (He et al.
2022), singular value pruning (Zhang et al. 2023), gat-
ing (Ding et al. 2023), or output-based criteria (Zhou et al.
2025) to remove redundant parameters. However, these ap-
proaches focus exclusively on LoRA, overlooking substan-
tial redundancy within the backbone. LoRAPrune (Zhang
et al. 2024) addresses this by estimating task-specific sig-
nals from LoRA to identify and prune the backbone param-
eters. Yet, it remains limited in multi-task contexts, where
different LoORA branches activate distinct backbone regions,
creating conflicts and inefficiencies.

Problem Formulation

Here, we present the pruning problem for Vision Transform-
ers with multiple LoORA modules in a multi-task setting.

Low-rank Adaptation. To efficiently adapt pretrained
ViTs for multiple tasks, we employ LoRAs (Hu et al. 2022),
which constrain parameter updates to a low-rank subspace
while keeping the pretrained weights frozen. During fine-
tuning, the backbone parameters are excluded from gradient
updates, while the inserted LoRA modules remain trainable.

Consider a pretrained ViT with layers ¢ € {1,... ,Li,
where each layer is parameterized by weights W, € R4*%,
For each task t € {1,...,T}, we attach a task-specific
LoRA module to layer ¢, defined as follows.

T
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where r < min(d, k). The resulting effective weight for
task t at layer ¢ is I/V[(te)ff =W, + AWZ(t). Given an input

x| the prediction for task ¢ is obtained through the full
forward pass across all layers,

50 = 1, (s0; W),

where f; denotes the task-specific classifier. The training ob-
jective for task ¢ is then defined as follows.

min r® (gm’ y<t>) .
(A B,

Each ViT layer is trained with its corresponding LoRA
weights (Aét),Bét)), enabling efficient adaptation while
keeping the pretrained backbone frozen. However, the
layer-wise placement of adapters introduces additional prun-
ing dependencies (Zhang et al. 2024): sparsity decisions in
one layer can reduce the effectiveness of adapters in sub-
sequent layers, leading to inter-layer coupling. Moreover,
within each layer, pruning backbone and adapter compo-
nents independently risks disrupting their mutual reliance,
creating intra-layer coupling. Therefore, an effective prun-
ing method must jointly consider both backbone and adapter
components to sustain efficiency while preserving task per-
formance in multi-task settings.

Layer-wise Pruning with Multi-LoRA. While LoRA en-
ables efficient multi-task adaptation, it also poses significant
challenges for pruning. Each layer integrates both the pre-
trained backbone and multiple task-specific LORA modules,



so pruning solely the backbone may render certain adapters
ineffective, whereas pruning adapters in isolation risks un-
dermining cross-task consistency (Zhang et al. 2024).
Specifically, we introduce two pruning mask types per
layer ¢: a backbone mask My, and task-specific adapter

masks M 4, MBlEt). For the backbone, we define
Wy = Wy ® My, , where My, € {0,1}9%F,

For each task ¢, one may apply a LoORA mask M , .., but
4

this is less efficient as it ignores LoRA’s low-rank structure.
Hence, we prune the LoRA update in a factorized manner,

AWy = (B & Myo) (4 © M)

where MA;” € {0,1}**" and MB/@ € {0,1}9%". Thus,

the pruned layer becomes We(te)ff = W, + AT/VEt). Here,
Myy, controls sparsity in the shared backbone, while M A

and MBét)

adapter. This design avoids applying a coarse binary mask
directly to the full low-rank update, instead pruning its fac-
torized components for more structured compression. Then,
the pruning objective is defined as follows.

enable fine-grained pruning within each LoRéA

min £0(50,90) + A b + s 08

L
{Mw, 7MA?) 7MBét) Yea

Each ViT layer maintains a shared backbone mask and task-
specific adapter masks. The backbone sparsity penalty is

Ow = ZZLZI || Mw, |lo, while the adapter penalty for task ¢ is
0% = S0 (IM o llo + || Mo [lo). Here, My, enforces
14 4

structural sparsity shared across tasks, and (M GE M Bm)
£ I

allow task-specific fine-grained pruning. These masks are
interdependent: pruning in the backbone constrains the ca-
pacity of LoRA modules, creating layer-wise dependencies
between shared and task-specific components.

Naive weight pruning with arbitrary patterns often leads
to infeasible GPU deployment. Thus, we adopt structural
pruning (Zhang et al. 2024; Liu et al. 2018; Molchanov et al.
2019), which removes entire rows or columns of weight
matrices to ensure hardware-friendly sparsity. Beyond com-
putational efficiency, this approach preserves the low-rank
structure intrinsic to LoRA, better aligning parameter distri-
butions. Intuitively, it reduces the effective rank of the back-
bone to encode shared information, while allowing LoRA to
retain task-specific adaptations.

Theoretical Motivation

Here, we first analyze the structural dependency arising
when pruning the backbone within LoRA, and then extend
the analysis to task dependency in the multi-LoRA setting.
Consider a linear layer with a backbone W € R4** and
a LoRA update AW = BAT, where A € RFX" and B €
R Given inputs X € RF*™ and targets Y € R™*", we
seek to minimize the empirical squared loss as follows.

|Y — (W 4+ AW)X ||%.

Define Z := Y X T (XX ")~!, whichreducesto Z = Y X T
under the whitening assumption X X T = I. Then the opti-
mization problem is equivalent to

min 1Z -W — AW ||3, (1)

WeS(S), AWER(r)

where the feasible sets correspond to structural pruning and
low-rank constraints S(S) = {W : supp(W) C S} and
R(r) = { AW : rank(AW) < r }.!

Theorem 1 (Structure Dependency). For the problem in (1),
the following hold: If (W*, AW™) is a global minimizer of
(1), then

W* =Pgs)(Z = AW™), AW* =T.(Z -W~),
where Pg(g) denotes orthogonal projection onto S(S) and
T,(-) is the best rank-r approximation (truncated SVD).
Conversely, if (W', AW) satisfies these two equalities, then
it is a block-wise (coordinatewise) minimizer of (1) and
hence a stationary point. Moreover, if the truncated SVD at
rank r is unique (i.e., o.(Z —W') > 0,11(Z—W")) and the
projection onto S(S) is unique, then (W', AW') is a strict
local minimizer.

Theorem 1 demonstrates that pruning and LoRA are in-
herently coupled, since the regression target Z is decom-
posed into a sparse backbone W and a low-rank compo-
nent AW, each required to explain the residual the other
cannot. Pruning AW (e.g., reducing rank 7) increases the
residual Z — AW, forcing W to use more of its support S,
while pruning W (shrinking .S) enlarges Z — W, requiring
AW to assume greater expressive load. Consequently, the
optimal solution depends jointly on both components. Struc-
tural pruning can thus be aligned with LoRA’s low-rankness:
W captures entries LoRA cannot efficiently represent, while
AW offsets dimensions pruned from the backbone. This in-
terdependence shows why pruning strategies must be jointly
designed rather than applied to W and AW in isolation.

Then, we generalize Theorems 1 into a multi-task setting.

Theorem 2 (Task Dependency). With a shared backbone
and task weights p;, pruning a single task t (e.g., lowering its
LoRA rank) causes a backbone shift and cross-task changes
that scale linearly with py:

W =W le S pel| AW — AW O,
and
JAW) — AW*Ollp S iy po [AWO = AW O .

Here ks> 1 is a task-specific sensitivity scalar (larger when
task s is less spectrally separated). Thus, even a modest
change for one task propagates to all others, with severity
proportional to p; and amplified by k.

!The backbone support set S(.S) can be realized using a binary
mask Mw applied to the backbone weights, i.e., W=MyoW.
Likewise, the low-rank constraint R(r) is enforced through struc-
tured pruning of the LoRA factors, i.e., AW = (Mp ® B)(Ma ®
A)T, where the effective rank is determined by the number of ac-
tive columns retained by M4 and Mp.



Theorem 2 shows that pruning the LoRA component of
a single task ¢ (e.g., by reducing its rank r;) does not re-
main confined to that task but propagates to the shared back-
bone and, indirectly, to all other tasks. The magnitude of the
backbone shift scales with the task’s weight p;, while the
resulting changes in other tasks’ LoRA modules are further
amplified by their sensitivity factors ;. Intuitively, when
one task’s representational capacity is reduced, the backbone
compensates, thereby altering the residuals available to the
other tasks. Tasks with larger x4 (i.e., less spectral separa-
tion) are especially vulnerable to these effects, often suffer-
ing greater accuracy degradation.

In summary, Theorem 1 shows that pruning one com-
ponent affects the other’s optimal solution, while Theo-
rem 2 reveals that pruning one task influences others via
the shared backbone. These insights motivate LoGIC’s de-
sign: it prunes adapters first to reduce redundancy, uses task
routing for usage signals, and applies a consensus score for
backbone pruning.

Method

In the following, we introduce Multi-LoRA Guided Im-
portance Consensus (LoGIC), a unified pruning frame-
work for multi-task ViTs equipped with multiple LoRA
adapters. As illustrated in Figure 1, we adopt a Multi-
LoRA architecture (Agiza, Neseem, and Reda 2024; He,
Duan, and Zhu 2025), where each linear layer is augmented
with one shared LoRA module for cross-task knowledge
transfer and 7' task-specific adapters for specialized correc-
tions. While LoRA inherently offers strong parameter ef-
ficiency (r < min(d, k)), pruning in multi-task settings
remains challenging due to (i) structural dependencies be-
tween LoRA modules and the backbone, caused by con-
flicting sparsity patterns in task-specific adapters that com-
plicate integration and deployment, and (ii) cross-task in-
terference, where pruning shared backbone parameters us-
ing single-task signals risks discarding weights critical for
other tasks. To address these challenges, LoGIC integrates
two complementary components: structured LoORA pruning
with task-consistent masks to reduce redundancy, and back-
bone refinement guided by multi-task signals from LoRA to
balance pruning effectiveness with robust task performance.

Task-Consistent Pruning with Multi-LoRA

First, we prune the LoRA modules using progressive prun-
ing with task-consistent masks, progressively reducing re-
dundancy while ensuring hardware-friendly structured spar-
sity. Then, we introduce a task-adaptive gating mechanism
that is jointly used to train and prune LoRA modules, dy-
namically balancing shared and task-specific contributions
while providing reliable pruning signals.

Progressive Pruning for Task-Specific LoRA. A key
challenge in multi-task pruning is achieving high sparsity
without degrading accuracy. Simply pruning once often
leads to irreversible accuracy loss, as the model cannot adapt
to the removed parameters. Moreover, pruning decisions
must contend with two forms of coupling: inter-layer cou-
pling, where sparsity choices in earlier layers reduce the ef-

fectiveness of adapters in subsequent layers, and intra-layer
coupling, where the utility of a LoRA branch depends on
which backbone or other adapter parameters are preserved
within the same layer. To address these challenges, we adopt
progressive pruning, an iterative procedure that alternates
between pruning and fine-tuning. This approach progres-
sively removes redundant parameters while allowing the re-
maining modules to adapt, thereby alleviating both inter-
and intra-layer coupling and maintaining task performance
even under aggressive sparsity.

Formally, all tasks are trained with a composite loss de-
fined as the average of task-specific losses, i.e., L =

L S°7_ L, where L™ denotes the loss for task ¢. The pre-
trained backbone weights W, remain frozen, and the back-
bone pruning mask Myy, is fixed, so pruning focuses exclu-
sively on the LoRA modules. We optlmlze adapter masks

Mg) and M g ), while LoRA parameters A and B, (t) are
updated contmuously via gradient descent. The masks are
updated periodically based on adaptation signals (e.g., gra-
dient magnitude or gating usage), allowing pruning and fine-
tuning to co-adapt and preserve accuracy.

Building on this procedure, we enforce task-consistency
of masks within each LoRA, requiring all tasks to share
My, and Mp, to mitigate cross-task pruning dependen-
cies and enable structured deployment. Without this con-
straint, tasks may induce inconsistent sparsity patterns that
(1) hinder the use of structured sparsity accelerators (e.g.,
TensorRT, XLA) (Jeong et al. 2021) and (ii) preserve re-
dundant parameters as overlapping subspaces are indepen-
dently retained by different tasks (Xiang et al. 2024). To fur-
ther ensure hardware-friendliness, we adopt structural prun-
ing (Xu et al. 2024; Zhang et al. 2024), applying M4, and
Mp, in regular patterns such as row-wise or column-wise
groups. Unlike unstructured pruning, this strategy removes
predefined parameter groups, enabling efficient GPU execu-
tion while preserving the low-rank structure for a coherent,
rank-reduced update. We also apply structural pruning to the
backbone weights Myy,, preserving critical structures in the
shared representation while encouraging LoRA to capture
task-specific adaptations, thereby achieving better alignment
between LoRA and backbone masks.

Task-Adaptive Gating for Shared LoRA. While pro-
gressive pruning reduces redundancy in task-specific
adapters, it does not fully account for the shared LoRA,
which interacts with all task-specific branches. Moreover,
enforcing a single shared pruning mask across tasks poses
challenges, as it compels all adapters to prune at the same
rate even though tasks differ in pruning tolerance: some can
be pruned more aggressively, whereas others require addi-
tional capacity to maintain accuracy. To address this, we in-
troduce a task-adaptive gating mechanism integrated with
progressive pruning. Each Transformer block is equipped
with a differentiable, task-dependent gate G, that dynami-
cally modulates the contributions of shared and task-specific
LoRA branches, thereby enabling fine-grained balancing
between shared representation and task-specific specializa-
tion (Ma et al. 2018; Stickland and Murray 2019). For a task
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Figure 1: Overall Architecture of LoGIC. a) Task-Consistent Pruning with Multi-LoRA preserves task-specific specialization
in LoRA, and b) Cross-Task Consensus Pruning removes redundant backbone parameters across tasks.

t, gating coefficients are computed as follows.
t
[glg,s)hared’ gé spemﬁc} = U(Wéh(t) + bé)’

where h(®) is the task embedding, W, and b, are learnable
parameters, and o(-) is the sigmoid function. These coeffi-
cients weight the pruned LoRA perturbations before being
added to the block output.

Importantly, the gating outputs play a dual role: they
not only provide pruning signals but also guide the up-
dates of LoRA parameters. To reflect this, we extend the
pruning-aware objective such that (i) the task loss updates
Agt) and Bét) in proportion to the gating coefficients, and
(ii) sparsity penalties are scaled by each task’s reliance on
shared versus task-specific branches. For each layer ¢, we
decompose the pruning-aware objective into two compo-
nents. The first term captures the gated task loss:

T t) 0 0
Llask,l = % Zt:l (géfs)lﬂemﬁc t) (A( B<t)) + gé shared t) (Aé >’ Bl( ))) 9

where the gating coefficients G é ) determine how much each
task relies on the task-specific adapters (Agt), Bét)) versus

the shared adapter (AI(V,O), B éo))_ This ensures that LoRA up-
dates are scaled in proportion to task reliance.

The second term regularizes the LoRA mask through
task—speciﬁc and shared routing gates:

t t
2N L= T Z gé s)pecmc lgs)hared) (”MAeHO + HMBeHO) ,

where task-spec1ﬁc gates weight the 0-norm penalties to
prune more aggressively for tasks heavily reliant on their
own LoRA branches, reducing redundancy while safeguard-
ing critical capacity. Shared gates penalize sparsity in pro-
portion to cross-task usage, preventing excessive pruning
of parameters essential for knowledge transfer. Overall, the
gating coefficients adaptively scale LoRA updates based on
each task’s reliance on task-specific versus shared adapters.

Cross-Task Consensus Pruning for Backbone

After pruning LoRA modules, we extend pruning to the
frozen ViT backbone. Since direct gradient updates are un-

available in parameter-efficient tuning (Hu et al. 2022; Zhu
et al. 2024), backbone importance estimates via fine-tuning
signals are often coarse, so pruning must necessarily rely
on indirect signals. This introduces intra-layer coupling, as
prediction quality depends on which backbone or adapter
parameters are preserved. Thus, pruning must jointly con-
sider both to retain task-critical capacity while removing re-
dundancy. To this end, we define an importance score I; ;
that integrates multiple task-aware signals to guide back-
bone pruning effectively.

I = Z](t) w® 7
¢

where I; ; denotes the importance of weight (i, ) in layer ¢
of W,. Directly deriving this score through full backpropa-
gation across all tasks would be prohibitively costly. There-
fore, we approximate it using three complementary compo-
nents: (1) gradient sensitivity I i(’tj), (2) routing-based task us-
age patterns w®), and (3) the magnitude of LoRA-induced
adaptations 7(*). This consensus-driven criterion ensures
that only parameters consistently deemed unimportant
across all tasks are pruned, while preserving shared repre-
sentations crucial for generalization and specialized ones es-
sential for individual tasks.

LoRA-guided Gradient Sensitivity. A central signal in
our consensus scoring is the sensitivity of each pretrained
weight to task performance, as captured through LoRA
updates. To estimate this, we adapt the first-order Taylor
expansion—based importance estimation technique (Zhang
et al. 2024), which allows us to approximate each weight’s
contribution without requiring full backpropagation through
the frozen backbone. For task ¢, the gradient-based impor-

tance score 1. j) estimates the squared first-order influence
of weight (i, j) on task ¢’s loss:

2
2(t) _ [ aL® 4(t) B or® _ oL® orL® \  |yir () (t)T)
1= <05<'>A~: + B%G — 2y aAS."?) [Wz,_7+(B a07) 1

which approximates how perturbations to weight (¢, j) af-
fect the task loss via LoRA updates, providing a first-order



estimate of its contribution to performance. Computing such
sensitivity exactly across all tasks would be prohibitively
costly due to repeated backpropagation through the frozen
backbone. The Taylor approximation offers a tractable alter-
native that captures gradient-driven importance while avoid-
ing the expense of full second-order computations. Thus,
gradient sensitivity provides a principled, task-level base-
line for weight importance. When aggregated across tasks
in the consensus framework, it ensures pruning decisions re-
flect both shared and task-specific gradient signals, forming
the foundation for balanced multi-task pruning.

Routing-Based Task Usage Patterns. While gradient
sensitivity captures the local impact of each weight on task
performance, it overlooks how frequently tasks rely on spe-
cific LoRA branches. To address this, we incorporate gat-
ing outputs from the Task-Adaptive Routing module into
our importance estimation. These gating coefficients quan-
tify the relative contributions of shared and task-specific
adapters at each layer (Ma et al. 2018; Stickland and Murray
2019). While computing exact routing dynamics is costly,
we use gating outputs from the task-adaptive gating module
as a proxy. For each task ¢, we define the usage weight as

t) _ @) (t) (t) >
’LU( ) = g@,speciﬁc + g&shared’ where g&speciﬁc measures task ¢’s

reliance on its dedicated adapter, and géfs)hmd quantifies re-
liance on the shared adapter at layer ¢. This adaptively scales
weight importance by each LoRA’s utilization, ensuring that
critical parameters, whether task-specific or shared, are re-
tained, aligning pruning with task demands.

Magnitude of LoRA-Induced Adaptations. While gra-
dient sensitivity and routing-based usage capture how
weights contribute to and are utilized by tasks, they over-
look the extent to which tasks adapt the pretrained back-
bone. Tasks that apply larger LoORA updates are generally
more sensitive to pruning, since removing such parame-
ters risks eliminating essential adaptations (Kim, Kim, and
Kang 2024). We define the adaptation strength of each task-
specific LORA branch ¢ as n® = || A®)|| ¢ - || BY|| g, where
|| - ||» denotes the Frobenius norm, capturing the effective
scale of its low-rank adaptation. We then normalize n(*) via
a softmax to obtain (), so that importance reflects collec-
tive knowledge across tasks rather than isolated task-specific
updates. This additional signal complements routing-based
usage by highlighting parameters that, though rarely acti-
vated, may enable substantial, high-impact modifications.
In doing so, it preserves such “low-frequency, high-impact”
weights, which are essential for sustaining robust multi-task
performance under sparsity.

By integrating three complementary signals, (i) LoRA-
guided gradient sensitivity, which measures each weight’s
impact on task loss; (ii) routing-based usage, which indi-
cates task reliance on shared versus task-specific branches;
and (iii) adaptation magnitude, which highlights substantial
task-driven updates, LoGIC effectively balances shared and
task-specific capacity, preserving critical weights and sus-
taining strong multi-task performance under high sparsity.

Experiments

Dataset. We evaluate our method on benchmarks span-
ning pixel-level, image-level, and instance-level tasks. NYU
Depth v2 (NYUv2) (Silberman et al. 2012) contains 1,449
indoor images annotated for semantic segmentation (13
classes), monocular depth estimation, and surface normal
prediction, making it a standard benchmark for multi-task
dense prediction. For fine-grained image classification, we
use Oxford Flowers-102 (Nilsback and Zisserman 2008),
which covers 102 flower species with high intra-class vari-
ance. For instance-level evaluation, we adopt CPPE-5 (Dagli
and Shaikh 2023), a dataset of about 1,000 real-world im-
ages annotated with bounding boxes for five personal pro-
tective equipment categories.

Evaluation Metrics. Performance is measured with stan-
dard task-specific metrics: Mean Intersection over Union
(mIoU) (Long, Shelhamer, and Darrell 2015) for semantic
segmentation, Threshold Accuracy (Silberman et al. 2012)
for depth estimation, Angular Accuracy (Silberman et al.
2012) for surface normals, Top-1 Accuracy for classifica-
tion, and mean Average Precision (mAP) under the COCO
protocol (Lin et al. 2014) for detection. We also report the
average score (AVG) across all five metrics to assess over-
all multi-task performance. Beyond accuracy, we evaluate
model compactness and efficiency using two measures: spar-
sity, defined as the proportion of pruned weights, and model
size, with three components for the multi-task setting, the
ViT backbone, the LoRA modules, and the resulting total
parameter count for deployment. These jointly capture the
trade-off between accuracy and efficiency.

Architecture. We use two ViT backbones: ViT-L (Doso-
vitskiy et al. 2020b) (304M parameters, pretrained on
ImageNet-21K) and Swin-L (Liu et al. 2021) (195M
parameters, pretrained on ImageNet-22K with shifted-
window attention), both initialized from HuggingFace
checkpoints (Wolf et al. 2019). For dense prediction, we add
an Atrous Spatial Pyramid Pooling (ASPP) module (Chen
et al. 2017) to enhance multi-scale features. Task-specific
heads are lightweight: 1 x 1 convolutions for segmentation,
depth, and normals; linear layers for classification; and a
DETR-style head with 100 queries (Carion et al. 2020).

Baselines. We consider two deployment strategies. Full
Fine-Tuning (FFT) trains a separate model per task, pro-
viding full capacity without sharing. Multi-Task Tuning
(MTT) jointly updates all weights across tasks. For effi-
ciency, we also evaluate LoRA (Hu et al. 2022), which
adds task-specific low-rank adapters using only about 1%
of the parameters, enabling lightweight multi-task adap-
tation. For pruning baselines, Magnitude Pruning (Lee
et al. 2021) removes low-magnitude weights during fine-
tuning, while Hessian-based Pruning (Kuznedelev et al.
2022) uses second-order information for more informed de-
cisions. LoORAPrune (Zhang et al. 2024) combines LoRA
with backbone pruning to reduce inference cost, but its sin-
gle shared adapter often leads to conflicts in multi-task set-
tings. AdaLoRA (Zhang et al. 2023) reallocates LoRA ca-
pacity using task-specific importance scores and performs



Sparsity Approach Model Size SEG DEPTH NORMAL CLS OD

Backbone LoRA Total mloU?T o125 1T Angle30°1 Acct mAP*T
Full Fine Tuning (FFT) 30Mx5 OM 1520M 0.7444 0.7044 0.6309  0.9297 0.4457
0% Multi-Task Tuning (MTT) 304M x 1 oM 304M  0.7061 0.7005 0.5202  0.8287 0.4503
LoRA 30Mx 1 3.8Mx5 323M 0.7531 0.6874 0.6006 09771 0.4172
FFT + AdaLoRA 30M x5 3.IMx5 15355M 0.6857 0.6113 0.4603  0.9618 0.4415
FFT + Magnitude Pruning 225M x5 OM 1125M  0.7012  0.6537 0.4929  0.8345 0.4325
FFT + Hessian-based Pruning  225M x 5 oM 1125M  0.6789 0.6488 0.4799  0.8095 0.4256
i 30% FFT + LoRAPrune 225M x5 3.IMx5 1140.5M 0.7242 0.6824 0.4930  0.9602 0.4313
S MTT + Magnitude Pruning 225M x 1 oM 225M  0.6722  0.6435 0.4834  0.7783 0.4410
MTT + Hessian-based Pruning 225M x 1 oM 225M  0.6567 0.5395 0.4760  0.7599 0.4103
LoGIC (Ours) 225Mx 1 3.IMx6 243.6M 0.7506 0.7118 0.6020  0.9648 0.4424
FFT + Magnitude Pruning 146M x 5 oM 730M  0.6059 0.5785 0.4299  0.7068 0.4152
FFT + Hessian-based Pruning 146M x5  OM 730M  0.5876 0.5783 0.3759  0.6292 0.4256
50% FFT + LoRAPrune 146M x5 2.8M x5 744M  0.6540 0.5965 0.4563  0.9006 0.3945
MTT + Magnitude Pruning 146M x 1 oM 146M  0.5712 0.5401 0.4209  0.5581 0.4324
MTT + Hessian-based Pruning 146M x 1 oM 146M  0.4696 0.4806 0.3514  0.4098 0.4010
LoGIC (Ours) 146Mx 1 2.8Mx6 162.8M 0.7130 0.6625 0.5739  0.9006 0.4400
Full Fine Tuning (FFT) 195M x5 OM 975M  0.7552 0.7486 0.5948  0.9786 0.4386
0% Multi-Task Tuning (MTT) 195M x 1 oM 195M  0.7303 0.7224 0.4675  0.9572 0.4193
LoRA 195Mx1 2.6Mx5 208M 0.7398 0.7198 0.5394  0.9908 0.4422
FFT + AdaLoRA 195M x5 22Mx5 986M  0.6725 0.5603 0.3721 0.9786 0.3991
FFT + Magnitude Pruning 139Mx5 OM 695M  0.6803 0.6724 0.4398  0.9410 0.4252
A FFT + Hessian-based Pruning 139M x5  OM 695M  0.6655 0.5095 0.4192  0.9284 0.4356
= 30% FFT + LoRAPrune 139M x5 22Mx5 706M  0.6888 0.6249 0.4108  0.9801 0.4432
z MTT + Magnitude Pruning 139M x 1 oM 139M  0.6902 0.6611 0.4478 09312 0.4196
« MTT + Hessian-based Pruning 139M x 1 oM 139M  0.6652 0.3269 0.4188 0.9067 0.3911
LoGIC (Ours) 139M x 1 22Mx 6 1522M 0.7249 0.7108 0.5421  0.9817 0.4303
FFT + Magnitude Pruning 103M x 5 oM 515M  0.6042 0.5495 0.4035 0.8766 0.4097
FFT + Hessian-based Pruning 103M x5  OM 51SM  0.5985 0.5321 0.4087  0.8324 0.3987
50% FFT + LoRAPrune 103M x5 2.0Mx5 525M 04782 0.4594 0.3123  0.8746 0.3959
MTT + Magnitude Pruning 103Mx1 OM 103M  0.5704 0.5507 0.3845  0.8364 0.4005
MTT + Hessian-based Pruning 103M x 1 oM 103M  0.4358 0.3844 0.2692  0.2018 0.3622
LoGIC (Ours) 103Mx1 2.0Mx6 115M  0.6201 0.5800 04536  0.9174 0.4120

Table 1: Comparison of different pruning approaches on ViT-L (304 M) and Swin-L (195 M) across five tasks. Our method

LoGIC achieves strong performance while training only a small fraction of parameters.

well in single-task adaptation, but in multi-task settings its
fixed backbone causes cross-task interference and reduces
robustness under high sparsity. We use 30% LoRA sparsity
for the AdalLoRA baseline.

Quantitative Results. As shown in Table 1, LoGIC out-
performs all MTT pruning methods by explicitly model-
ing the dependency between LoRA modules and the shared
backbone. While prior approaches neglect the coupling
across tasks and introduce interference, LoGIC selectively
prunes only those parameters that are consistently unimpor-
tant across all tasks. By effectively extracting shared infor-
mation across different tasks, LoGIC achieves substantial
performance gains. At 30% sparsity on ViT-L, it reaches
an average score of 0.6943, compared to 0.6037 for the
best competing MTT method. Even under 50% sparsity,
LoGIC maintains strong performance (0.6580), surpass-
ing both FFT-based and MTT-based baselines. On Swin-L,
LoGIC achieves 0.6780 at 30% sparsity and 0.5966 at 50%,
outperforming all other methods at the same sparsity lev-

els. Notably, compared to the FFT model that employs five
independently fine-tuned backbones, LoGIC achieves com-
parable multi-task performance using only 16% of the to-
tal deployment parameters. Although LoRAPrune supports
backbone pruning alongside LoRA modules, it is limited to
single-task settings and thus falls short of LoGIC in both pa-
rameter efficiency and overall performance.

Conclusion

We propose LoGIC, a unified multi-task ViT pruning frame-
work that integrates shared and task-specific LORA modules
with adaptive routing and consensus-based importance esti-
mation to preserve accuracy under heavy compression. We
show that pruning in multi-LoRA ViTs is inherently cou-
pled across tasks, making independent pruning suboptimal.
Leveraging this insight, LoGIC attains high sparsity while
maintaining accuracy, matching full-precision performance
with only 50% of the parameters and surpassing all base-
lines. We also plan to extend LoGIC to zero-shot and online
pruning settings.



Acknowledgments

This work was supported by the NTU-Delta Electronics
Innovation Research Funding Project; by the Ministry of
Education, Taiwan, through the Higher Education Sprout
Project—The Featured Area Research Center Program; and
by the National Science and Technology Council, Taiwan,
under Grant NSTC 114-2223-E-002-009.

References

Agiza, A.; Neseem, M.; and Reda, S. 2024. Mtlora: Low-
rank adaptation approach for efficient multi-task learning.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 16196-16205.

Ahmed, S.; Al Arafat, A.; Najafi, D.; Mahmood, A.; Rizve,
M. N.; Al Nahian, M.; Zhou, R.; Angizi, S.; and Rakin, A. S.
2025. DeepCompress-ViT: Rethinking Model Compression
to Enhance Efficiency of Vision Transformers at the Edge.

In Proceedings of the Computer Vision and Pattern Recog-
nition Conference, 30147-30156.

Albert, P; Zhang, F. Z.; Saratchandran, H.; Rodriguez-
Opazo, C.; van den Hengel, A.; and Abbasnejad, E. 2025.
RandLoRA: Full rank parameter-efficient fine-tuning of
large models. In The Thirteenth International Conference
on Learning Representations.

Arnab, A.; Dehghani, M.; Heigold, G.; Sun, C.; Luci¢, M.;
and Schmid, C. 2021. Vivit: A video vision transformer. In
Proceedings of the IEEE/CVF international conference on
computer vision, 6836—-6846.

Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov,
A.; and Zagoruyko, S. 2020. End-to-end object detection
with transformers. In European conference on computer vi-
sion, 213-229. Springer.

Chen, J.; Zhang, A.; Shi, X.; Li, M.; Smola, A.; and Yang,
D. 2023. Parameter-Efficient Fine-Tuning Design Spaces.
In The Eleventh International Conference on Learning Rep-
resentations.

Chen, L.-C.; Papandreou, G.; Schroff, F.; and Adam, H.
2017. Rethinking atrous convolution for semantic image
segmentation. arXiv preprint arXiv:1706.05587.

Chen, Z.; Badrinarayanan, V.; Lee, C.-Y.; and Rabinovich,
A. 2018. Gradnorm: Gradient normalization for adaptive
loss balancing in deep multitask networks. In International
conference on machine learning, 794-803. PMLR.

Dagli, R.; and Shaikh, A. M. 2023. Cppe-5: Medical per-
sonal protective equipment dataset. SN Computer Science,
4(3): 263.

Ding, N.; Lv, X.; Wang, Q.; Chen, Y.; Zhou, B.; Liu, Z;
and Sun, M. 2023. Sparse Low-rank Adaptation of Pre-
trained Language Models. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, 4133-4145.

Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; et al. 2020a. An Image is Worth
16x16 Words: Transformers for Image Recognition at Scale.
In International Conference on Learning Representations.

Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; et al. 2020b. An image is worth
16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929.

Fu, Z.; Yang, H.; So, A. M.-C.; Lam, W.; Bing, L.; and Col-
lier, N. 2023. On the effectiveness of parameter-efficient
fine-tuning. In Proceedings of the AAAI conference on arti-
ficial intelligence, volume 37, 12799-12807.

Goyal, S.; Kumar, A.; Garg, S.; Kolter, Z.; and Raghunathan,
A. 2023. Finetune like you pretrain: Improved finetuning of
zero-shot vision models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
19338-19347.

He, J.; Duan, Z.; and Zhu, F. 2025. CL-LoRA: Con-
tinual Low-Rank Adaptation for Rehearsal-Free Class-
Incremental Learning. In Proceedings of the Computer Vi-
sion and Pattern Recognition Conference, 30534-30544.
He, S.; Ding, L.; Dong, D.; Zhang, M.; and Tao, D.
2022. SparseAdapter: An Easy Approach for Improving the
Parameter-Efficiency of Adapters. In 2022 Findings of the
Association for Computational Linguistics: EMNLP 2022.

He, X.; Gao, D.; Zhou, Z.; Tong, Y.; and Thiele, L. 2021.
Pruning-aware merging for efficient multitask inference.
In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, 585-595.

Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; Wang, L.; Chen, W.; et al. 2022. Lora: Low-rank adapta-
tion of large language models. ICLR, 1(2): 3.

Jeong, E.; Kim, J.; Tan, S.; Lee, J.; and Ha, S. 2021. Deep
learning inference parallelization on heterogeneous proces-
sors with tensorrt. IEEE Embedded Systems Letters, 14(1):
15-18.

Kim, J.; Kim, G.; and Kang, S. 2024. Lottery Rank-Pruning
Adaptation Parameter Efficient Fine-Tuning. Mathematics,
12(23): 3744.

Kuznedelev, D.; Kurtic, E.; Frantar, E.; and Alistarh, D.
2022. ovit: An accurate second-order pruning framework
for vision transformers. openreview.

Lee, J.; Park, S.; Mo, S.; Ahn, S.; and Shin, J. 2021. Layer-
adaptive Sparsity for the Magnitude-based Pruning. In In-
ternational Conference on Learning Representations.

Li, T.; Chang, H.; Mishra, S.; Zhang, H.; Katabi, D.; and Kr-
ishnan, D. 2023. Mage: Masked generative encoder to unify
representation learning and image synthesis. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2142-2152.

Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ra-
manan, D.; Dollér, P.; and Zitnick, C. L. 2014. Microsoft
coco: Common objects in context. In European conference
on computer vision, 740-755. Springer.

Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin,
S.; and Guo, B. 2021. Swin transformer: Hierarchical vi-
sion transformer using shifted windows. In Proceedings of

the IEEE/CVF international conference on computer vision,
10012-10022.



Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; and Darrell, T. 2018.
Rethinking the Value of Network Pruning. In International
Conference on Learning Representations.

Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully convo-
lutional networks for semantic segmentation. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 3431-3440.

Ma, J.; Zhao, Z.; Yi, X.; Chen, J.; Hong, L.; and Chi, E. H.
2018. Modeling task relationships in multi-task learning
with multi-gate mixture-of-experts. In Proceedings of the
24th ACM SIGKDD international conference on knowledge
discovery & data mining, 1930-1939.

Molchanov, P.; Mallya, A.; Tyree, S.; Frosio, I.; and Kautz,
J. 2019. Importance estimation for neural network pruning.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 11264-11272.

Nilsback, M.-E.; and Zisserman, A. 2008. Automated flower
classification over a large number of classes. In 2008 Sixth
Indian conference on computer vision, graphics & image
processing, 722-729. IEEE.

Parikh, D.; Li, S.; Zhang, B.; Kannan, R.; Busart, C.; and
Prasanna, V. 2024. Accelerating vit inference on fpga
through static and dynamic pruning. In 2024 IEEE 32nd An-
nual International Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM), 78-89. IEEE.

Silberman, N.; Hoiem, D.; Kohli, P.; and Fergus, R. 2012.
Indoor segmentation and support inference from rgbd im-
ages. In European conference on computer vision, 746-760.
Springer.

Stickland, A. C.; and Murray, 1. 2019. Bert and pals: Pro-
jected attention layers for efficient adaptation in multi-task

learning. In International Conference on Machine Learning,
5986-5995. PMLR.

Sun, X.; Hassani, A.; Wang, Z.; Huang, G.; and Shi, H. 2022.
Disparse: Disentangled sparsification for multitask model
compression. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 12382—12392.

Tay, Y.; Dehghani, M.; Rao, J.; Fedus, W.; Abnar, S.; Chung,
H. W.; Narang, S.; Yogatama, D.; Vaswani, A.; and Metzler,
D. 2021. Scale Efficiently: Insights from Pretraining and
Finetuning Transformers. In International Conference on
Learning Representations.

Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.;
Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al.
2019. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771.

Xiang, M.; Tang, J.; Yang, Q.; Guan, H.; and Liu, T.
2024. AdapMTL: Adaptive Pruning Framework for Mul-
titask Learning Model. In Proceedings of the 32nd ACM
International Conference on Multimedia, 5121-5130.

Xie, Y.; and Liao, Y. 2023. Efficient-ViT: A light-weight
classification model based on CNN and ViT. In Proceed-
ings of the 2023 6th International Conference on Image and
Graphics Processing, 64-70.

Xu, K.; Wang, Z.; Chen, C.; Geng, X.; Lin, J.; Yang, X;
Wu, M.; Li, X.; and Lin, W. 2024. Lpvit: Low-power semi-
structured pruning for vision transformers. In European
Conference on Computer Vision, 269-287. Springer.

Yang, H.; Yin, H.; Shen, M.; Molchanov, P.;; Li, H.; and
Kautz, J. 2023a. Global vision transformer pruning with
hessian-aware saliency. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
18547-18557.

Yang, Y.; Chiang, H.-Y.; Li, G.; Marculescu, D.; and Mar-
culescu, R. 2023b. Efficient low-rank backpropagation for
vision transformer adaptation. Advances in Neural Informa-
tion Processing Systems, 36: 14725-14736.

Ye, H.; Zhang, B.; Chen, T.; Fan, J.; and Wang, B. 2023.
Performance-aware approximation of global channel prun-
ing for multitask cnns. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 45(8): 10267-10284.

Zhang, B.; Tian, Z.; Tang, Q.; Chu, X.; Wei, X.; Shen, C.;
et al. 2022. Segvit: Semantic segmentation with plain vision
transformers. Advances in Neural Information Processing
Systems, 35: 4971-4982.

Zhang, M.; Chen, H.; Shen, C.; Yang, Z.; Ou, L.; Yu, X.; and
Zhuang, B. 2024. LoRAPrune: Structured pruning meets
low-rank parameter-efficient fine-tuning. In Findings of
the Association for Computational Linguistics: ACL 2024,
3013-3026.

Zhang, Q.; Chen, M.; Bukharin, A.; He, P.; Cheng, Y.; Chen,
W.; and Zhao, T. 2023. Adaptive Budget Allocation for
Parameter-Efficient Fine-Tuning. In International Confer-
ence on Learning Representations. Openreview.

Zhang, Z.; Lu, X.; Cao, G.; Yang, Y.; Jiao, L.; and Liu, F.
2021. ViT-YOLO: Transformer-based YOLO for object de-
tection. In Proceedings of the IEEE/CVF international con-
ference on computer vision, 2799-2808.

Zhou, H.; Lu, X.; Xu, W.; Zhu, C.; Zhao, T.; and Yang, M.
2025. LoRA-drop: Efficient LoRA Parameter Pruning based
on Output Evaluation. In COLING.

Zhu, Y.; Shen, Z.; Zhao, Z.; Wang, S.; Wang, X.; Zhao, X.;
Shen, D.; and Wang, Q. 2024. Melo: Low-rank adaptation
is better than fine-tuning for medical image diagnosis. In
2024 IEEE International Symposium on Biomedical Imag-
ing (ISBI), 1-5. IEEE.



